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One often investigates electrorheological(ER) solids by using the point-dipole(PD) approximation, which,
however, is known to err considerably for touching particles due to the existence of many-body(local-field)
effects and multipolar interactions. Beyond the PD model, previous attempts have been restricted to either
local-field effects only or multipolar interactions only, but not both. In the present work, we have developed a
many-body dipole-induced dipole model for an ER solid the lattice structure of which can be changed due to
the application of external fields, in an attempt to take into account both local-field effects and multipolar
interactions. The results show that the multipolar interaction can indeed be dominant over the dipolar interac-
tion, while the local-field effect may yield an important correction. Also, the results are well understood with
the aid of spectral representation theory.
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I. INTRODUCTION

In electrorheological(ER) fluids [1], the suspended polar-
izable particles can form columns under the application of a
strong electric field[2]. The rapid field-induced aggregation
[3] and the large anisotropy[4] of ER fluids render these
materials potentially important for applications. As the exter-
nal field exceeds a critical field, the ER fluid turns into an ER
solid, the ground state of which is a body-centered tetragonal
(bct) lattice. It has been found that the structure of the ER
solid can be changed from the bct lattice to other lattices by
the application of external electric and/or magnetic fields
[5–7].

To discuss the ER effect, the existing theory[8] and simu-
lation [9] are often based on the simple point-dipole(PD)
approximation. Since many-body(local-field) effects and
multipolar interactions between particles have been ne-
glected, the predicted strength of the ER effect is of an order
lower than the experimental results. Hence, much work has
been done to sort out more accurate models[9–13]. Recently,
we put forth a dipole-induced dipole(DID) model [14] to
improve the PD model. In that work, we considered the par-
ticle interaction between two polarized dielectric particles by
means of the multiple image formula, but neglected the
local-field effect because it was believed that the multipolar
interactions can be dominant over the local-field effects. To
some extent, we should question the quantitative accuracy of
this claim since in ER solids chain and sheet structures are
known to occur. In fact, this issue has already been quanti-
fied for particles with large dielectric contrast with the liquid
phase by Martin and Anderson[15].

In view of the fact that the previous work treated either
local-field effects only[16] or multipolar interactions only
[12], but not both, it is necessary to develop a different
model which can be used to study both the local-field effects

and the multipolar interactions. Thus, in this work, we shall
use the Ewald-Kornfeld formulation[7,17,18] to calculate
the effective dielectric constant of ER solids, in order to
derive an analytic formula for the many-particle DID model.
Here the effective dielectric constant contains the desired
detailed lattice structural information of ER solids. To one’s
interest, by using this model, we can assess the importance
of the local-field effects against the multipolar interactions.

This paper is organized as follows. In Sec. II, we present
the many-body DID model and derive the effective dielectric
constant of the ER solid, based on the Ewald-Kornfeld for-
mulation, by taking into account the lattice effect. In Sec. III,
we investigate the local-field effect and multipolar interac-
tion by calculating the interparticle force as well as the di-
pole factor(also called the Clausius-Mossotti factor). This is
followed by a discussion and conclusion in Sec. IV.

II. FORMALISM

We concentrate on the case where highly polarized dielec-
tric particles of diameterd and dielectric constante1 are
embedded in a host fluid ofe2. In the dilute limit, the dipole
factor for an isolated particle is known as

b =
e1 − e2

e1 + 2e2
. s1d

For a pair of touching particles, one should take into account
the effect of multiple images, and hence based on the mul-
tiple image method[14] the corresponding dipole factor has
the following form:

b * = bo
n=0

`

spbdnF sinha

sinhsn + 1daG3

, s2d

wherep is the polarization index withp=−1 andp=2 rep-
resenting the transverse field casesTd and the longitudinal
field sLd, respectively. In Eq.(2), a satisfies the relation
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cosha=s/d. Here s denotes the center-to-center separation
between the two particles.

Next, consider the ground state of an ER solid, namely, a
bct lattice, which can be regarded as a tetragonal lattice, plus
a basis of two particles each of which is fixed with a point
dipole at its center. One of the two particles is located at a
corner and the other one at the body center of the tetragonal
unit cell. Its lattice constants are denoted byc=q, and
as=bd=,q−1/2 along thez andxsyd axes, respectively. In this
case, the uniaxial anisotropic axis is directed along thez axis.
As q varies, the volume of the unit cell stays the same,Vc
=,3. Thus, the degree of anisotropy of the tetragonal lattice
is measured by howq deviates from unity.

When one applies anx-directed external electric fieldEW 0,
the dipole momentspW =px̂, are perpendicular to the uniaxial

anisotropic axis. Then, the local fieldEW (e.g.,EW =Exx̂, Ez=0)
at the lattice pointRW =0W has the following form:

Ex = po
j=1

2

o
RWÞ0W

f− g1sRjd + xj
2q2g2sRjdg

−
4pp

Vc
o
GW Þ0W

PsGW d
Gx

2

G2expS− G2

4h2 D +
4ph3

3Îp
. s3d

In this equation,g1 andg2 are two coefficients, given by

g1srd =
erfcshrd

r3 +
2h

Îpr2
exps− h2r2d,

g2srd =
3 erfcshrd

r5 + S 4h3

Îpr2
+

6h

Îpr4Dexps− h2r2d,

where erfcshrd is the complementary error function, andh
an adjustable parameter making the summation converge
rapidly. In Eq.(3), R andG denote the lattice vector and the
reciprocal lattice vector, respectively,

RW = ,sq−1/2lx̂ + q−1/2mŷ+ qnẑd,

GW =
2p

,
sq1/2ux̂+ q1/2vŷ + q−1wẑd,

wherel, m, n, u, v, w are integers. In addition,xj andRj in
Eq. (3) are given by, respectively,

xj = l −
j − 1

2
, Rj = URW −

j − 1

2
sax̂+ aŷ+ cẑdU ,

and the structure factorPsGW d=1+expfisu+v+wd /pg.
So far, we apply the result of the local field to evaluate the

effective polarizabilityaef f of the dipole lattice, which is
derived from a self-consistent method,

aeff =
a

1 − abx/Vc
, s4d

wherea stands for the polarizability of an isolated dipole,
andbx=ExVc/p is the local field factor which was measured
in computer simulations by Martinet al. [19,20]. Let us use
bz andbx s;byd to denote the local-field factors parallel and
perpendicular to the uniaxial anisotropic axis, respectively.
Accordingly, we havebz=bx=4p /3 for the bcc latticesq
=1d. In what follows, we setb8=3b /4p. It is worth noting
that b8 is a function of a single variable, namely, the degree
of anisotropyq. Also, bz8 and bx8 satisfy the sum rulebz8
+2bx8=3, andbz8=bx8=1 [at q=1 (bcc)] just represents the
isotropic limit.

Based on Eq.(4), it is straightforward to derive the dipole
factor for a particlesb8d in the lattice under consideration,
which admits

b8 =
b

1 − bfbx8
, s5d

wheref stands for the volume fraction of the particles. Thus,
the local-field effect arising from all the other particles in the
lattice has been included in Eq.(5). In this connection, the
effective dielectric constantee can be determined by

b

1 − bfbx8
= b8 ;

e1 − ee

e1 + 2ee
. s6d

That is, we see the particle as one that is embedded in an
effective medium with(effective) dielectric constantee. It is
worth remarking that thisee includes the detailed structural
information of the lattice, as expected.

Next, to put forth the many-body DID model, let us con-
sider a pair of dielectric spherical particles which are both
located in thex axis and placed in an effective medium with
dielectric constantee. Apply a constant electric fieldE0
=E0x̂ to the particles, which contributes to each particle a
dipole moment given byp10 and p20 s;p10=eeE0d

3b8 /8d.
Then, the dipole momentp10 induces an image dipolep11 in
particle 2, while p11 induces yet another image dipole in
particle 1. As a result, multiple images are formed. The same
description holds for particle 2 as well. After deriving the
sum of the dipole moments inside each particle, we obtain
the desired expressions for the corresponding dipole factor

b8* = b8o
n=0

`

spb8dnF sinha

sinhsn + 1daG3

s7d

for the transverse field casesp=−1d and the longitudinal field
sp=2d, respectively. This equation is a nontrivial result in-
deed because it includes both the multipolar interaction and
the local-field effect.

To discuss the interparticle force, we take one step for-
ward to calculate the force between the two dielectric par-
ticles. Since we have already obtained the dipole factorsb8*
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and b*, the force can be readily calculated by an energy
approach. In doing so, the dipole energysEgd of the two
particles is determined by the dot product of the electric field
and the corresponding dipole moment, and hence the force
between them is given by the derivative of the dipole energy
with respect to the separation, namely, −dEg/ds. Thus, based
on this relation, we obtain the expressions for the interpar-
ticle forces, respectively,

F * = − s1/8de2E0
2d3bo

n=0

`

spbdnFn, s8d

F8* = − s1/8deeTE0
2d3b8o

n=0

`

spb8dnFn, s9d

with

Fn =
sinha cosha sinhfsn + 1dag − sn + 1dsinh2 a coshfsn + 1dag

sd/3dsinh4fsn + 1dag
,

whereF* indicates the interparticle force between the two
particles in the pure host fluid for the transverse field case
sp=−1d and the longitudinal fieldsp=2d, andF8* the inter-
particle force between the two particles in the effective me-
dium of dielectric constantee. It is shown that both the mul-
tipolar interaction and the local-field effect have been taken
into account forF8* [Eq. (9)]. In Eqs.(8) and(9), settingn to
1 yields the corresponding point-dipole force, namely,F and
F8. The force expressions are reasonable, as then=0 term of
Eqs.(8) and (9) vanishes while then=1 term gives the cor-
rect point-dipole force.

III. NUMERICAL RESULTS

We are now in a position to do some numerical calcula-
tions to discuss the effect of the degree of anisotropyq on
b8* /b*, which indicates the correction of the local-field ef-

fect on the multiple image effect, as well as on the ratio ofb*
or b8* to b. Finally, we shall study theq effect on the inter-
particle force which is normalized by the corresponding
point-dipole force. Without loss of generality, we sete1
=30e0, e2=2.8e0, and s/d=1.1 for numerical calculations,
wheree0 denotes the dielectric constant of free space.

Figure 1 shows the dependence of the local-field factor on
the degree of anisotropyq. It is evident thatbx8 (or bz8) is
caused to increase(or decrease) asq increases. A plateau is
shown atbx8=bz8=1, which actually includes the transforma-
tions ranging from the bccsq=1d lattice to the fccsq=21/3d.
Accordingly, a similar plateau occurs in all other figures(see
Figs. 2–4.

In Fig. 2, we investigate the ratio ofbT8
* /bT

* andbL8
* /bL

* as
a function ofq. It is found that the local-field effect is domi-
nant over the multipolar interactions since all the ratios
(bT8

* /bT
* andbL8

* /bL
* ) are larger than unity. More precisely, for

both the transverse field case[Fig. 2(a)] and the longitudinal
field [Fig. 2(b)], the local-field effect can be large, especially
at high volume fractions and/or largeq. In this case, the
correction due to the local field cannot be neglected. More-
over, as the volume fractionf is given bL8

* /bL
* (longitudinal

field) is larger thanbT8
* /bT

* (transverse field).

FIG. 1. (Color online) Dependence of the(dimensionless) local
field factorbx8 andbz8 on the(dimensionless) degree of anisotropy
q. The bct (q=0.873 58, i.e., ground state), bcc sq=1.0d, and fcc
sq=21/3d lattices are also shown(long-dashed lines).

FIG. 2. Ratio of dipole factorb8* to b* versusq for different
volume fractionsf =0.1, 0.15, and 0.2.(a) Transverse field cases;
(b) longitudinal field cases. Parameterse1=30e0, e2=2.8e0, and
s/d=1.1.
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We plot the ratio ofb* / b and b8* /b in Fig. 3. As ex-
pected, both the local-field effect and the multipolar interac-
tion can be dominant over the dipolar interaction, and hence
they should be taken into account. Again, such effects are
stronger for the longitudinal field case than for the transverse
field.

Figure 4 displays the interparticle force which is normal-
ized by the corresponding point-dipole force. From this fig-
ure, it is found that the multipolar interaction can indeed be
dominant over the dipolar interaction, while the local-field
effect may yield an important correction. Moreover, the cor-
rection due to the local-field effect can be very large, espe-
cially at large volume fractions and/or largeq. Nevertheless,
for small volume fractions, the correction due to the local
field is very small. Furthermore, the reduction of the magni-
tude of the effective interaction between the two particles is
shown for the transverse field case[Fig. 4]. In contrast, the
increase in the effective interaction is found for the longitu-
dinal field case.

As a matter of fact, theq dependence of the dipole factor
[Eq. (5)] can qualitatively be understood with the aid of the
spectral representation theory[21]. In doing so, let us denote
%=s1−e1/e2d−1, and then Eq.(5) is reexpressed as

b8 =
q1

% − u1
, s10d

where the residueq1=−1/3 and the poleu1=s1− fbx8d /3.
Using the numerical values of the present model calculation,
we find b8=s−1/3d / fs−0.103d−s1− fbx8d /3g. In this case, in-
creasingq leads to increasingbx (see Fig. 1), and henceb8 is
caused to increase, as shown in Figs. 2 and 3.

In the above calculations, we calculated the multiple im-
age effect on the particle interaction by taking particles
which are located along thex axis as an example. On the
other hand, if we choose the particles located on thez axis,
the opposite effect should be found accordingly(no figures
shown here) due to the fact thatbz8 is caused to decrease by
increasingq (see Fig. 1) in view of the sum rule forbz8 and
bx8, namely,bz8+2bx8=3.

IV. DISCUSSION AND CONCLUSION

Here a few comments are in order. We put forth a many-
body DID model for the ER solid, in an attempt to investi-
gate both local-field effects and multipolar interactions. The
Ewald-Kornfeld method for dipolar systems has provided an

accurate means of assessing the local-field effect. The claim
that the multipolar interaction can be dominant over the di-
polar interaction for touching particles has been confirmed in
a rigorous manner.

The local-field effects on the interparticle force are always
present in a many-particle system such as ER fluids. How-
ever, as the particles approach and finally touch, the multi-
polar interaction becomes more prominent. In fact, when the
center-to-center separation between the two interacting par-
ticles is larger than 2d, the effect of multipole interaction can
be small enough to be neglected[22]. In this case, the local-
field effect should play a role, as expected.

Klingenberget al. have obtained the numerical results for
interacting particles by solving the empirical force expres-
sion [10,23], in which there are three force functions being
determined from the numerical solution of Laplace’s equa-
tion. Fortunately, we have shown that the three force func-
tions could relate to our multiple image moments[24]. Fur-
ther, we [24] have compared the results of our multiple
image theory with the numerical results provided by Klin-
genberget al. [10,23]. Regarding the comparison, we would
like to refer to Fig. 1 of Ref.[24]. Based on the comparison,
we would say that reasonable agreements have been ob-
tained, and hence our multiple image expressions should be
expected to give reliable results.

In fact, we presented an effective medium theory(EMT)
for considering the local-field effect on the electrorotation
and dielectric dispersion spectra of colloidal particles or bio-
logical cells in a previous paper[25]. However, we were
unable to study the detailed structural information via the
EMT. In this connection, it is also of interest to use the
many-body DID model to discuss the electrokinetics of col-
loidal particles or biological cells[22,26].

The present model is expected to be used in various stud-
ies of the behavior of ER solids, e.g., in a computer simula-
tion [24]. By including the local-field effect, the DID model
can be used with higher accuracy. In addition, it is also of
value to extend the present work to polydisperse ER solids
[27], in which the permittivities of particles can have a dis-
tribution.

To sum up, we have developed a many-body DID model
for the ER solid, the lattice structure of which can be
changed due to the application of external fields, in an at-
tempt to take into account both local-field effects and multi-
polar interactions. The effective dielectric constant for the

FIG. 3. Same as Fig. 2, but for the ratio ofb* or b8* to b. FIG. 4. Same as Fig. 2, but for the ratio of interparticle forceF*
or F8* to point-dipole forceF.
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ER solid has been derived, based on the Ewald-Kornfeld
formulation. It has been shown that the multipolar interaction
can indeed be dominant over the dipolar interaction, while
the local-field effect may yield an important correction. Also,
the results are well understood with the aid of the spectral
representation theory.
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